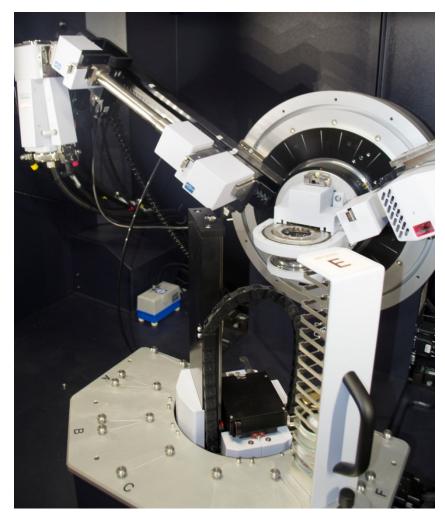

Basic Powder XRD methods at RECX

Phase identification, Quantitative Analysis and Lattice parameter refinement David Wragg University of Oslo


What can you get from a Powder Diffraction Pattern?

- Peak positions
- Peak Intensities
 - Phase identification
 - Quantitative Analysis (QPA)
 - Lattice parameter refinement
- Peak Shapes
 - Crystallite size
 - strain

Diffractometer and Data collection

- Any diffractometer!
 - automated routine instruments are the most common choice
 - Bruker D8 Discover in Oslo
 - Bruker D8 Advance in Trondheim
 - Capillary instruments may be used to reduce preferred orientation
 - More complicated applications require better data

How Can We Help You?

- Data collection
 - And advice on data collection methods for specific samples
 - We have experience of a range of difficult sample types
- Training
- Phase identification and analysis
 - Subject to "man hour" costs

Phase Identification

- Diffraction pattern is a unique fingerprint of the crystal lattice which produced it
- Phases from a database are matched to the observed pattern using line position and intensity
- Sample height correction is important
 - Back loading sample holders can help
 - Capillaries give best reproducibility
- ICDD and COD databases available at both RECX PXRD nodes
- Databases are integrated into the EVA pattern analysis software for automatic searching

Quantitative Analysis

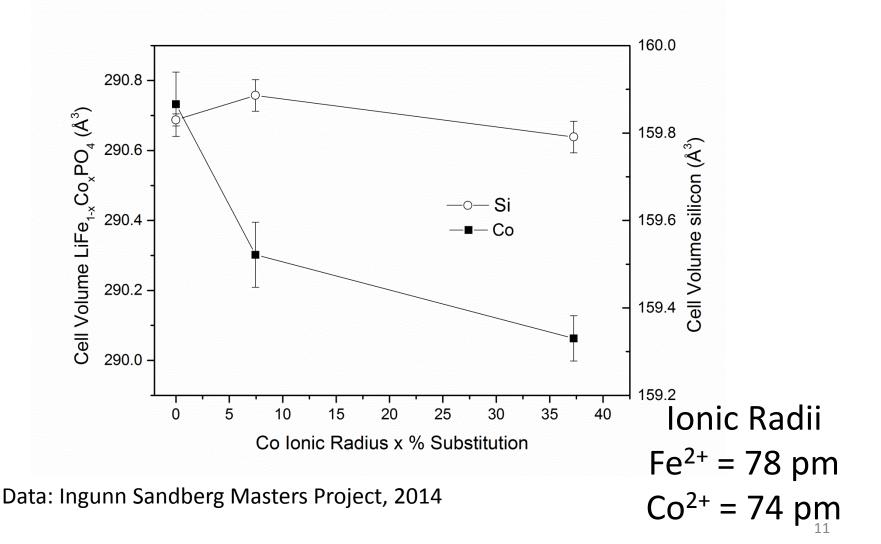
- The peak intensities are related to the weight fractions of phases in a mixture
- Once the phases in a sample are known they can be quantified
- Traditional method:
 - Identify unique, non-overlapping peaks for each phase
 - measure the intensities
 - Calculate phase fractions

Quantitative Analysis

- Modern Method
 - Full profile Rietveld refinement
- Advantages
 - More accurate- uses all peaks
 - Easy to do with modern software and can be automated
 - Unknown phases can be included (PONKCS method)
- Requirements
 - Need structural data for the phases (unless using PONKCS)
 - Need to use Rietveld software (relatively straightforward today)
 - Preferred orientation should be avoided

QPA demo

• Si and LaB6


Lattice refinement

- Substitution of atoms in a lattice changes peak positions and intensities
- We can study the degree of substitution by studying the size of the crystal lattice (from peak positions)
- A starting "parent" unit cell is required
- Least squares fitting methods are used
 - Old:
 - Get parent and substituted peak positions
 - Fit numerically
 - New
 - Fit parent unit cell against substituted data with full pattern refinement
 - Full Rietveld method (peak intensities from structure) or Structureless methods (dummy intensities) can be used (Pawley and Le Bail methods)

Structureless Lattice Refinement Demo

• Co in LiFePO4

Example Data From Lattice Parameter Refinement

Summary

- A lot of data can be extracted from quick, routine powder XRD data collections
 - Phase identification
 - Quantitative analysis
 - Lattice parameters
 - Crystallite size (approximate)

RECX can help you to do this!