Small-angle X-ray Scattering (SAXS) for Studies of Soft, Biological and Hard Matter

Reidar Lund

Dept. of Chemistry University of Oslo Email: reidar.lund@kjemi.uio.no

Bio-world

Nanomedicine

Catalysis-world

Small-angle scattering reveals the organization of many atoms:

Polymer-world

Structural *in situ* Studies of e.g. Biological Materials

We want to say something about this:

But often we only measure this:

Small-angle scattering provides *in situ* information in solutions - complementary to crystallographic methods

Frozen croaker fish

Small-angle Scattering: length scales

SAXS at the Department of Chemistry @UiO (REXC)

Bruker "Nanostar" SAXS

Optimized for weak solution scattering

High flux (~ 8.0E7 cps), low background, quantitative background subtraction, calibrated on absolute scale

Multi-sample scans

Flow-through cell for solutions

Peltier elements for precision temperature scans

What can we do with SAS?

-196 - 300 C

X-Y-stage for scanning SAXS

Grazing-incidence SAXSlateral structures on surfaces

SAXS: wide range of systems in the nano-range **biology**

nanoparticles

polymers

Hard Matter

nanoparticles

Porous rocks

Catalysts

Hard Matter: nanoparticle synthesis

Color depends on nanoparticle size and shape

Reactivity depends on nanoparticle size

Rao et al. Chem. A 2002

Size, distribution and shape are essential. - Control of the process - control of properties

Hard Matter: nanoparticle synthesis

Example: nucleation & growth to a final particle

Nanoparticle synthesis: in situ observation by SAXS

Abécassis, B., Testard, F., Spalla, O., and Barboux, P. (2007) Probing in situ the Nucleation and Growth of Gold Nanoparticles by Small-Angle X-ray Scattering., *Nano Lett.* 7, 1723–1727.

Nanoparticle synthesis: in situ observation by SAXS

σ (nm)

Time (s)

SAXS provides complete quantitative information on particle growth, size and distributions

Soft Matter

Block Copolymer Micelles

Dendrimers

Mesoscopic soft crystals

More Moore? - nanomaterials for storage devices

A hunt for smaller and smaller storage units

Reidar Lund, UC-BReidar Lund, UiO, 14 Feb. 2013

Mesoscopic Soft Crystals: block copolymer melts

SAXS reveals ordering and detailed structure of soft crystals for nano-lithography

Nano-carriers for drug-delivery

Self-assembly of n-alkane-Poly(ethylene oxide)

SAXS data from RECX

Reveals detailed overall morphology + internal structure of micellar nano-carriers

with Dr. T. Zinn (UiO)

Proteins in solution

Model protein: lysozyme

SAXS provide rapid characterisation of proteins in solution

Which structure does the protein adapt in solution? Will determine enzymatic function

Structure of eEF3 and the mechanism of transfer RNA release from the E-site

nature

Christian B. F. Andersen^{1*}, Thomas Becker^{2*}†, Michael Blau², Monika Anand³, Mario Halic²†, Bharvi Balar³, Thorsten Mielke⁴, Thomas Boesen¹, Jan Skov Pedersen⁵, Christian M. T. Spahn⁶, Terri Goss Kinzy³, Gregers R. Andersen¹ & Roland Beckmann²†

From Prof. Jan Skov Pedersen (Aarhus University)

SAXS gives direct quantitative information on molecular weight, shape, size and interactions at the nanoscale.

High-flux / low background at SAXS/RECX give good data even for weakly scattering samples

The instrument can be used for virtually any type of samples.

In situ studies may give unique insight into kinetic process

Welcome to the SAXS instrument in the new REXC-lab!

You are most welcome to discuss possible experiments and ideas with us!

THANK YOU

nstrumentation: examples

Polymer Colloid Group @ Dept. Chem. UiO

Multi-angle Dynamic and Static Light Scattering

SANS at IFE, Kjeller

Rheometer

Rheo-SALS

International Facilities

D11 at ILL, Grenoble

ID02 at ESRF, Grenoble

Surfactant Solutions: kinetics of transformation

Fit model: coexistence worm-like and spherical micelles

Reidar Lund, Soft Matter, SynkNøyt 21 Oct. 2013

Surfactant Solutions: kinetic pathways

Reidar Lund, Soft Matter, SynkNøyt 21 Oct. 2013

Conclusion

- SAS and LS provide unique possibilities to investigate **nanostructures** *in situ* without perturbations.

- Together with light scattering, SAXS/SANS provides a **broad length scale**: from Å's to micrometers.

- SANS and contrast variation allow structural details to be highlighted and renders molecular transport processes visible (not shown).

- Time-resolved SANS/SAXS offers both structural and temporal resolution - **unique insight into kinetic processes.**