

UiO Centre for Materials Science and Nanotechnology University of Oslo

RECX

Thin film metrology

University of Oslo

XRR

- Film thickness
- Roughness
- Density

GIXRD

- Enhance material probed
- Phase
- Stress
- Depth profiling

HRXRD / RSM

- Texture
- Strain
- Orientation

Phi-scan

- In plane orientation

Rocking curve

- Miscut
- Orientation
- Polar plot - Texture

University of Oslo

XRR

- Film thickness
- Roughness
- Density

GIXRD

- Enhance material probed
- Phase
- Stress
- Depth profiling

HRXRD / RSM

- Texture
- Strain
- Orientation

Phi-scan

- In plane orientation

Rocking curve

- Miscut
- Orientation
- Polar plot - Texture

University of Oslo

XRR (X-ray reflectometry)

Reflectivity as function of angle to obtain information on:

- Film thickness
- Surface roughness

University of Oslo

XRR (X-ray reflectometry)

Refined parameters: LaNiO₃ Thickness 48.98nm " Roughness 0.30 nm

"

A surface layer of 1.4nm is also required to fully explain the results

Density 7.05 g/cm³

University of Oslo

XRR (X-ray reflectometry)

Layered thin films of Eu_2O_3 and TiO_2 grown by ALD as conversion material with the aim of controlling the Eu-Eu distance.

UiO Centre for Materials Science and Nanotechnology University of Oslo

XRR (X-ray reflectometry)

Layered thin films of Eu_2O_3 and TiO_2 grown by ALD as conversion material with the aim of controlling the Eu-Eu distance.

The double layer thicknesses: 10N = 7.5 Å 20N = 15.9 Å 50N = 29.1 Å

Half the double layer thickness of the 10N sample, 3.8 Å, is approx the same as the shortest Eu - Eu distance in cubic Eu_2O_3 , 3.6 Å

University of Oslo

XRR (X-ray reflectometry)

University of Oslo

XRR

- Film thickness
- Roughness
- Density

GIXRD

- Enhance material probed
- Phase
- Stress
- Depth profiling

HRXRD / RSM

- Texture
- Strain
- Orientation

Phi-scan

- In plane orientation

Rocking curve

- Miscut
- Orientation
- Polar plot - Texture

University of Oslo

GIXRD (Grazing incident x-ray diffraction)

Increase the pathway through the sample

University of Oslo

GIXRD (Grazing incident x-ray diffraction)

Increase the pathway through the sample

GIXRD

University of Oslo

GIXRD (Grazing incident x-ray diffraction)

A ZnO film of 200 nm deposited by ALD

University of Oslo

GIXRD (Grazing incident x-ray diffraction)

Depth profile analysis

An example of depth probing on a CIGS solar structure, showing the different layers exposed to the parallel X-ray beam in a sequential mode by varying the incident angle. Top pattern is from the conductive oxide layer only, with CIGS coming in (middle, highlighted) and next the Mo metal contact layer appearing (bottom diagram, Mo peaks highlighted).

University of Oslo

XRR

- Film thickness
- Roughness
- Density

GIXRD

- Enhance material probed
- Phase
- Stress
- Depth profiling

HRXRD/RSM

- Texture
- Strain
- Orientation

Phi-scan

- In plane orientation

Rocking curve

- Miscut
- Orientation
- Polar plot - Texture

UiO Centre for Materials Science and Nanotechnology University of Oslo

HRXRD (High-resolution x-ray diffraction)

Increase the pathway through the sample

University of Oslo

HRXRD (High-resolution x-ray diffraction)

Map the reciprocal space to obtain information on:

- Orientation
- Strain
- Texture ... and a lot more...

University of Oslo

HRXRD (High-resolution x-ray diffraction)

 $|\mathbf{q}| = 2\pi/d$ Courtesy P.Kidd. PANalytical Research, Sussex, GB

HRXRD (High-resolution x-ray diffraction)

University of Oslo

HRXRD (High-resolution x-ray diffraction)

A reciprocal space map (RSM) of a GaAs based epitaxial solar cell structure

A rocking curve diagram (RC) of an epitaxial solar cell structure around the (004) reflection of the GaAs substrate

University of Oslo

HRXRD (High-resolution x-ray diffraction)

Film of NaNbO₃ on LaAlO₃

University of Oslo

XRR

- Film thickness
- Roughness
- Density

GIXRD

- Enhance material probed
- Phase
- Stress
- Depth profiling

HRXRD / RSM

- Texture
- Strain
- Orientation

Phi-scan

- In plane orientation

Rocking curve

- Miscut
- Orientation
- Polar plot - Texture